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Techniques to Command Lines.

® NLP methods in HIDS
® Use of Transformer Arch. over Network
Flow Data




Detect Adversarial Behaviour (1/2)

Operations on computer systems frequently use the command line. Applications perform simple tasks
(such as software updates) via tools or scripts, sysadmins deploy jobs that run on multiple machines, and
technical users spend a great deal of their time in console windows, Adversaries also heavily utilize the
command line. If a system has been compromised, an attacker will perform a majority of their actions
using built-in system tools, at the command line. This strategy benefits the attacker, since their actions
will look very similar to other normal tasks performed on the system, Methodology designed to
automatically detect whether a system has been compromised needs to be able to tell the difference
between benign and malicious command line operations. In order to build mechanisms capable of
classifying command lines in this way, we first need to understand what they do - in other words, we
need to be able to parse them in a similar way to how we parse natural languages. This article describes
the process we've been using to develop methodology capable of parsing and categorizing command
lines at F-Secure.
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https://blog.f-secure.com/command-lines/

Detect Adversarial Behaviour (2/2)

Using NLP techniques to perform NER and POS tagging as shown
in the source.

Effortis required for data annotation but use of NLP techniques
over CLI Commands are something new.




NLP methods in HIDS (1/4)

This paper discuss
several NLP methods
for Host-based
Intrusion Detection
System.
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https://www.sciencedirect.com/science/article/pii/S1084804523001807

NLP methods in HIDS (2/4)

e Data Representation

NLP method

Neural lang model

Table 1. Example syscall sequences for reading two files (Grimmer et al., 2021).

Seql “open, read, write, open, read, write"
Seq2 “open, open, read, write, read, write"
Seq3 “open, open, read, read, write, write”
Strengths Weaknesses

« Predicts a future syscall sequence possibly to be executed during an
attack.

« Combining the known invoked syscall traces with predicted future syscall
sequences helps to improve the intrusion detection performance

« Modeling syscalls helps to capture interword relationships.

« Modeling the system behavior requires a
huge amount of data

Hybrid

« Makes HIDS more reliable and resilient against evasion and adversarial
attacks by combining decisions from heterogeneous detectors
« Gains the advantages of multiple features or models to lower FAR

« Requires high computation overhead
compared to single methods.




NLP methods in HIDS (3/4)

Neural language modeling methods:
® RNN-VED-based language model
® LSTM-based language model
® GRU-based language model

Hybrid:
e Combination of heterogeneous classifiers using different
NLP methods.
e Combination of n-gram and TF-IDF.
e Combination of n-gram and statistical approaches.
e Combination of n-gram and data augmentation
methods.




NLP methods in HIDS (4/4)

As previous slide suggest there are several hybrid methods
being used for HIDS, but there is no method that uses new
STOA.

As there are sequence of open, read and write, one can
create a sequential model with attention capabilities for
greater results.




Use of Transformer Arch. over Network Flow Data

There are limited paper which uses transformer arch. over network
flow data.

In depth analysis shows that one can work on the embeddings of
transformer to feed new embeddings in Transformer Arch.

Systematic Literature Review: One can work on SLA about
transformer + Network Flow / Packet Flow data.

Todo - Finding good dataset with little class imbalance and have
structured information
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