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Introduction
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Attention is All You Need Transformer :

● No Sequential Processing : Dispenses with 
sequential processing, employing self-
attention to establish global dependencies.

● Parallel Computations : Allows parallelization 
of computations, enhancing efficiency and 
scalability.

● Enhanced Performance : Revolutionizes tasks 
like language translation and image analysis, 
outperforming traditional sequential models.



Workflow Diagram
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Input Methods - Tokenizing the input data
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General Strategy : 

Chop the input up into chunks, and project each chunk into vector

Source :  Introduction to transformer architecture and discussion, 
https://vaclavkosar.com/ml/Tokenization-in-Machine-Learning-Explained

https://www.youtube.com/watch?v=Smav86u60FM&t=345s
https://vaclavkosar.com/ml/Tokenization-in-Machine-Learning-Explained
https://vaclavkosar.com/ml/Tokenization-in-Machine-Learning-Explained
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Embedding
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First we feed input into a embedding layer.

A word / sequence layer can be thought of as a 
lookup table to grab a learned vector 
representation of word / sequence.

Neural networks learn through numbers so each 
word maps to a vector with continuous values to 
represent that word / sequence.

Popular word embedding methods:

● Word2Vec
● TF-IDF

2. Embedding

Ref: https://vaclavkosar.com/ml/Embeddings-in-Machine-Learning-Explained

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/readings/cs224n-2019-notes01-wordvecs1.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/readings/cs224n-2019-notes01-wordvecs1.pdf
https://vaclavkosar.com/ml/Embeddings-in-Machine-Learning-Explained
https://vaclavkosar.com/ml/Embeddings-in-Machine-Learning-Explained
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Positional Encoding (1/5)
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● Embedding Space as Center: Word 
positions in the embedding space 
act as centers of circles.

● Position-dependent Perturbation: A 
perturbation is added based on the 
word's position in the sequence, 
creating a consistent circular 
pattern.

● Angular Variation: Words are 
perturbed at different angles but 
with the same distance, forming a 
circular pattern in the sequence.

The battery is running out.



Positional Encoding (2/5)
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● Proximity Influence: Close sequence 
words experience similar 
perturbations, while distant ones 
undergo variations in different 
directions.

The battery is running out.



Positional Encoding (3/5)
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3. Positional 

Encoding

A positional encoding is a finite dimensional 
representation of the location or “position” of 
items in a sequence. 

Given some sequence A = [a_0, …, a_{n-1}], the 
positional encoding must be some type of 
tensor that we can feed to a model to tell it 
where some value a_i is in the sequence A.



Encoder Block
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● Encoder map all input sequences into an 
abstract continuous representation that 
holds the learned information for that entire 
sequence. 

● It contains 2 sub-modules, multi-headed 
attention, followed by a fully connected 
network. 

● There are also residual connections around 
each of the two sublayers followed by a layer 
normalization.



Self Attention Unit
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● The main purpose of self attention 
mechanism is to add contextual information 
to words in sentence.

Source :  CS224N - Lecture 1

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture01-wordvecs1.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture01-wordvecs1.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture01-wordvecs1.pdf


Self Attention Unit
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● Q : The information that we want to query on
● K : The information that we already have
● V : What value we are adding after attention 

unit.

[Over to the board]



Encoder Block
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Self Attention Unit



Multi-Head Attention
● To make this a multi-headed 

attention computation, you 

need to split the query, key, 

and value into N vectors 

before applying self-attention.

● The split vectors then go 

through the self-attention 

process individually.

● Results of these heads get 

concatenated. 19



Why Multi-Head Attention (1/2)
● In a single samples 

there could be multiple 

contexts.

● To capture these 

contexts we need to 

have Multi-Head 

Attention.
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Why Multi-Head Attention (2/2)
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Significance of ReLu
To normalize the score from attention unit, 

keep the pair with the maximum resemblance 

to the context.
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Decoder Block (1/2)
This block has a similar sub-layer as the encoder. It 
has two multi-headed attention layers, a 
pointwise feed-forward layer, and residual 
connections, and layer normalization after each 
sub-layer. 

These sub-layers behave similarly to the layers in 
the encoder but each multi-headed attention layer 
has a different job. 

The decoder is capped off with a linear layer that 
acts as a classifier, and a softmax to get the word 
probabilities.

23



Decoder Block (2/2)
● The decoder is autoregressive, it 

begins with a start token, and it takes 
in a list of previous outputs as inputs, 
as well as the encoder outputs that 
contain the attention information 
from the input.

● The decoder stops decoding when it 
generates a token as an output.

● The decoder’s job is to generate text 
sequences.
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Decoder Block (2/2)
● Since the decoder is autoregressive 

and generates the sequence word by 
word, We need to prevent it from 
conditioning to future tokens.
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Look-Ahead Mask (1/2)
● The attention mechanism employs a 

matrix mask, matching the size of 
attention scores.

● Filled with 0's and negative infinities, it 
highlights the top right triangle of the 
scaled attention scores matrix.

● Upon adding the mask to scaled 
attention scores, the top right triangle 
is populated with negative infinities.

● After applying softmax, these infinities 
become zeros, essentially nullifying 
attention to future tokens.
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Look-Ahead Mask (2/2)
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This masking is the only 
difference in how the 
attention scores are 
calculated in the first 
multi-headed attention 
layer.



Output Probabilities
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The output of the final 
pointwise feedforward 
layer goes through a final 
linear layer, that acts as a 
classifier. The classifier is 
as big as the number of 
classes you have.



Transformer Arch.
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Further Reading

● Vaswani, Ashish, et al. "Attention is all you need." Advances in neural 

information processing systems 30 (2017). (Main)

● Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence 

learning with neural networks." Advances in neural information 

processing systems 27 (2014). (Seq-to-Seq)

● Illustrated Guide to Transformers- Step by Step Explanation

● The Illustrated Transformer

● Transformers from Scratch

● Understanding LSTM Networks 

● Word Vectors
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https://arxiv.org/abs/1706.03762
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https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://e2eml.school/transformers.html
https://e2eml.school/transformers.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/readings/cs224n-2019-notes01-wordvecs1.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/readings/cs224n-2019-notes01-wordvecs1.pdf


Transformer Arch.
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Further Reading

● Wang, Changhan, Kyunghyun Cho, and Jiatao Gu. "Neural machine 

translation with byte-level subwords." Proceedings of the AAAI 

conference on artificial intelligence. Vol. 34. No. 05. 2020.

https://arxiv.org/abs/1909.03341
https://arxiv.org/abs/1909.03341
https://arxiv.org/abs/1909.03341
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