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Introduction

Attention is All You Need Transformer : B en

e No Sequential Processing : Dispenses with

sequential processing, employing self-
. ] ] Fm
attention to establish global dependencies. ) |
e Parallel Computations : Allows parallelization (=) l -
. . . . Feed Attention
of computations, enhancing efficiency and [ s 0 |
scalability. v |~ | |
. ioNi s et
e Enhanced Performance : Revolutionizes tasks Ly e
like language translation and image analysis, ... =1 J U ( )
. ) . Encoding ' ¥ Encoding
outperforming traditional sequential models. ' e
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Figure 1: The Transformer - model architecture.
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Input Methods - Tokenizing the input data

General Strategy :

Chop the input up into chunks, and project each chunk into vector

tokens tokens U |:l U D tokens U I:] U D
Tl bt t 1 0l
patches byte pairs|| 'ppyre] ... [wl][.] :?l?l;;;iets “ ” N‘
Pt bt bt tt
Three guineafowl. W
input input input

Source : Introduction to transformer architecture and discussion,
https://vaclavkosar.com/ml/Tokenization-in-Machine-Learning-Explained
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Embedding

First we feed input into a embedding layer.

A word / sequence layer can be thought of as a -
|OOkup table to grab a Iearned VeCtor The '|'r;1|1.-l'nrrn|.'r-1111MI:I.I::I:ill:_';::.[:uru.
representation of word / sequence.

Neural networks learn through numbers so each
word maps to a vector with continuous values to

represent that word / sequence. put

Embedding

Popular word embedding methods:

e Word2Vec
e TF-IDF Hi how are you

Ref: https://vaclavkosar.com/ml/Embeddings-in-Machine-Learning-Explained
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Positional Encoding (1/5)

e Embedding Space as Center: Word
positions in the embedding space
act as centers of circles.

e Position-dependent Perturbation: A
perturbation is added based on the et || g tery
word's position in the sequence, encoding
creating a consistent circular

3

2

1

at position 0

pattern- The battery is running out.
e Angular Variation: Words are

perturbed at different angles but
with the same distance, forming a
circular pattern in the sequence.

10



e Proximity Influence: Close sequence

Positional Encoding (2/5)

words experience similar
perturbations, while distant ones
undergo variations in different
directions.

in the last

position at position O

before position
encoding

The battery is running out.



Positional Encoding (3/5)

A positional encoding is a finite dimensional
representation of the location or “position” of
items in a sequence.

Given some sequence A=[a_0, ..., a_{n-1}], the
positional encoding must be some type of
tensor that we can feed to a model to tell it
where some value a_iis in the sequence A.

Positional

Encoding

C
3. Positional
Encoding

Output
Erribedding

I I

Inpuls Outpuls
[shifted right)

The Transformer - model architecture,
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® Encoder map all input sequences into an oo o Q H E B
abstract continuous representation that .
holds the learned information for that entire =5
seguence. Forward

® |t contains 2 sub-modules, multi-headed :
attention, followed by a fully connected —
network. Attention

e There are also residual connections around 1
each of the two sublayers followed by a layer |E—_—GS—G—_uzu—_ . T G

normalization. Embeding H H H H

» Add &Norm

»  Add & Norm
|
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Self Attention Unit Scaled Dot-Product Aftention

e The main purpose of self attention ‘_‘lﬂ‘m
mechanism is to add contextual information =
to words in sentence. A |— (e

Q A

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...

% '

These context words will represent banking

Source : CS224N - Lecture 1 16



https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture01-wordvecs1.pdf
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Self Attention Unit Scaled Dot-Product Aftention

e Q:Theinformation that we want to query on ‘lth‘m

e K :Theinformation that we already have =

e V:What value we are adding after attention A |—\rEes
unit.

swam - ‘he river to gét ther bank a K v

[Over to the board]
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self attn layer (expanded)
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® To make this a multi-headed
attention computation, you
need to split the query, key,
and value into N vectors
before applying self-attention.

e The split vectors then go
through the self-attention

process individually.
® Results of these heads get
concatenated. 19




Why Multi-Head Attention (1/2)

In a single samples
there could be multiple
contexts.

To capture these
contexts we need to
have Multi-Head
Attention.

Multi-Head Attention

20



Why Multi-Head Attention (2/2)

swam he river to get \ bank

I swam across the river to get to the other bank

21




To normalize the score from attention unit,
keep the pair with the maximum resemblance
to the context.

multi-word
feature creation
matrix

selective second
order transition
matrix

masked word
activities

LayerNorm( BBEE + BHEE)

[ Linear

Relu

|

LayerNorm (BEEE+BREE)




Decoder Block (1/2)

This block has a similar sub-layer as the encoder. It
has two multi-headed attention layers, a
pointwise feed-forward layer, and residual
connections, and layer normalization after each
sub-layer.

These sub-layers behave similarly to the layers in
the encoder but each multi-headed attention layer
has a different job.

The decoder is capped off with a linear layer that
acts as a classifier, and a softmax to get the word
probabilities.

Add &Norm  +

Feed
Forward

Add & Norm  *

Muit-Headed
Attention

Add & Norm =

Multi-Headed
Attention
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e The decoder is autoregressive, it
begins with a start token, and it takes
in a list of previous outputs as inputs,
as well as the encoder outputs that
contain the attention information
from the input.

e The decoder stops decoding when it
generates a token as an output.

e The decoder’s job is to generate text

seguences.

Transformers
Decoder




® Since the decoder is autoregressive
and generates the sequence word by
word, We need to prevent it from
conditioning to future tokens.

EEE@
BEE@
DEE®
DO
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Look-Ahead Mask (1/2)

® The attention mechanism employs a
matrix mask, matching the size of
attention scores.

e Filled with O's and negative infinities, it
highlights the top right triangle of the
scaled attention scores matrix.

e Upon adding the mask to scaled
attention scores, the top right triangle
is populated with negative infinities.

e After applying softmax, these infinities
become zeros, essentially nullifying
attention to future tokens.

EEEE
pmEE

Cle[®

BE R
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This masking is the only
difference in how the
attention scores are
calculated in the first
multi-headed attention
layer.

Scaled Scores Look-Ahead Mask Masked Scores

mmmm
o [or[oe[or
o [or[oeor
o[ [ o]

<start> | am fine




The output of the final
pointwise feedforward
layer goes through a final
linear layer, that acts as a
classifier. The classifier is
as big as the number of
classes you have.

-~

00l o \_-1 0 nll N Class (vocab size)
- -

Softmax

T

&

Linear (classifier)

T
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Transformer Arch.
Further Reading

e Vaswani, Ashish, et al. "Attention is all you need." Advances in neural
information processing systems 30 (2017). (Main)

e Sutskever, llya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence

learning with neural networks." Advances in neural information

processing systems 27 (2014). (Seg-to-Seq)

lllustrated Guide to Transformers- Step by Step Explanation

The lllustrated Transformer

Transformers from Scratch

Understanding LSTM Networks

Word Vectors

29
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Transformer Arch.
Further Reading

e \Wang, Changhan, Kyunghyun Cho, and Jiatao Gu. "Neural machine
translation with byte-level subwords." Proceedings of the AAAl
conference on artificial intelligence. Vol. 34. No. 05. 2020.
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Questions?



Thank You
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